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AIM( rad

“J’o mathematically mode] the oscillations of a spherical bubble, either the time-dependent volume

V(t) or the radius R(t) can be used as the dependent variable. A recent exchange bctwccn the

advocates of the volume approach [7,abolotskaya,  1 LA., J. Acoust.  Sot. Am. 94, 2.448 (1993)]

and the radius approach [Wu, J. and G, IXI, J. Acoust, Sot. Am. 94, 2446 (1993)] concerns an

apparent discrepancy in the predicted nonlinear acoustic cmi ssions from a bubble subject to a t imc-

pcriodic external pressure field. “1’his  1 ~ttcr attempts to resolve the discrepancy via an examination

of the arguments offered by both sides. ]n addition, some general comments on nonlinear

harmonic and subharmonic emissions from acoustical y-forced bubble  oscillations arc presented.

[PACS: 4?J.25.J, 43.25.Y,  43,30,1., 43.35.Ij
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Senrching for the swxmd harmonic

I. I’he debate.

It is rather well documented experimentally that both single bubbles and bubble fields

oscillate nonlinearly.] One consequence of those nonlinear oscillations is that the radiated sound

from bubbles will also contain harmonics and, in some cases, subharmonic. ‘] ’he Fourier

spectrum of the radiated sound can, propcrl y interpreted, yield useful information about the bubble

mechanics, and about other parameters of both the external driving field and material conditions of

the bubble. Many researchers have used the presence of one or more of the spectral components

arising in acoustical experiments as proof of a (or many) bubble’s presence and/or activity.

It is therefore impo]lant  that any model purporting to mathematically describe the dynamics

of bubbles reproduce the spectral features of the experimental observable. Any model that, for the

same paramctrical  conditions, failed to yield (at least qualitatively) the same spectrum would be

considered simply deficient with respect to the prediction of observable radiative effects,

1 wish to turn to a recent series of exchanges between two groups who have considered

models of periodically-forced bubble oscillations.s  Their discussions relate  to the differing

predictions of the “radial displacement” (RD) and the “volume displacement” (V]>)  approaches.

“1’he VD camp obtains a different expression for the radiated acoustic pressure from the bubble at

the second harmonic frequency than the RI> camp. l’he purpose of this letter is to resolve the

apparent discrepancy between the two approaches, while not entering into the n~cle6  proper.

Some background illustrating how the different groups arrive at their results is necessary.

lJoIh models use as a framework the hydrodynamic theory of bubble oscillations developed by

Rayleigh,  Plesset,  Noltingk, Neppiras and Poritsky4, commonly referred to as the RI’ equation.

This model follows from the Navier-Stokes fluid equations if one assumes incompressible,

irrotational flow with normal-stress-continuity boundary conditions including surface tension and

bulk viscous stress. q’he present discussion is limited to the inviscid  model, although this will

have no relevance to the conclusions drawn. “l’he two groups part ways over the proper choice of

the dependent variable, ZS 1 and DW1 giving the respective justifications for their choice. As may
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be surmised, the RD approach uses the bubble  radius R(t) as the ctcpcndcnt  variable, while t hc VII

approach uses the bubble volume V(t).

in I>W1, the authors compare the t wo approaches. “1’hcy  note (as ZS 1 had pointed out) that

at a particular acoustic driving frequency o.P = ((1 + ?])~), with t? (J for isothermal, yfor adiabatic

oscillations) the polytropic  exponent, ml @ the bubble’s fundamental linear resonance frequent y)

the amplitude of the second-harmonic component of the radiated acoustic ficlcl  from the bubble

goes to zero for the VII model, but not for the 1{1) mock]. DW1 argue that the V]) approach is

inadcqua?e  primarily by showing that an equivalent expression 10 the RI) result can be derived by

approaching the VI> derivation different] y.

As an aside in IZ2, the authors argue that DW1 incorrectly infer a radiatccl  pressure from a

near fielcl  term which should, according to IZ2, decay as I/r ~, and thus not contribute to the sound

field. ‘1’hey maintain that the zero-amplituclc  result is correct for the far-fjcld radiation.

In the most recent exchange of letters (WI>?, and 73) both sets of authors rcitcratc their

positions, the arguments centering around the issue. of compressibility (which is, as regarcls the

zero-amplit ude result, beside the point). 1 n an apparent attempt to reconcile the two approaches

and the fact that experiments show a non-zero second-harmonic component, 7,3 complicates the
.

situation by arguing that the Pz = O result arises from the internal gas nonlinearity cancclling  the RI’

equation nonlinearity at @. Furlher, 7,3 says that the near-fie]d hydrodynamic nonlinear term can

yield the missing 2nd harmonic (implying that experiments were measuring near-field

hydrodynamic fluctuations, and not radiated acoustic pressure!)

“]’he main aim of this lxt(cr is to point out that this ongoing debate concerns essentially a

straw  man, born of injudicious application of perturbation mcthoc]s  within the modclling  process.

Both the VI> and RD approaches, the reader will recall, share the same physics, subject to the

limiting assumptions involved in arriving at the 1<1’ equation. If only substitution between R(t) and

V(Z) is performed, then the results of integrating either equation of motion will yield exactly

equivalent results. Note that even though the substitution involves a cubic  nonlinearity, it is both

3
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smooth and invertible over the allowed (open and strictly real) domain of R and V , which is

(0,’==’).

Why does the process break down? ‘J’hc reason, simply stated, is that the arguments

leading to an expression for the bubble’s second harmonic pressure amplitude 1)2 utilize  a

pcr[urbation approach: expansion followed by truncation. ‘J’hc results obtained following the

truncation do not preserve the original mnsJornmtion,  and hence should  not even be expected to

yield  the same behavior. Specifically, an expansion of the form 1{ = 1{0 -i R’ , when substituted

into the 1<1’ equation and followed by truncation of resulting terms of 0(>2) in R differs from

performing the same process with an expansion of the form V = VO 4 V’, truncating at 0(>2)  in V.

I’he resulting expressions are not correct to the same order in the same variables. in fact, in this

inst ante, the exactness of the geometry has been compromi scd !

11. “J’he physics briefly considered.

So far I have limited myself to clarifying the confusion over the source of the apparent

discrepancy between the V]> and RI] approaches. But which approach yields the better

approximation for the radiated acoustic field? ‘J’he first line of attack would be a detailed

comparison with a numerical solution to the full RP cquat  ion, Much work has been done in this

arca,s in particular, IIatock has calculated the second-hamonic velocity component (both radius

and volume velocity) for the full solution as a function of changing driving frequency. Por driving

frequencies spanning m* (from (OO up to ~co~),  there is no indication of a z,ero-amplitude result,

although the relative magnitude of the second-hamonic does vary, governecl  by the resonance

behavior of the bubble. It must be noted, however, that his driving pressure consisted of shor(

pulse trains, and thus steady-state oscillations were not attained.

Ultimately, the question can only be dccidcd  by comparison with cxpcrimcnt. “J’here are

man y experiments involving bubbles exposed to acc)ust  ic waves.6 ‘J “he on] y cxJminlcnts  to date

which can be compared exactly to the expressions clcvelopcd  for the bubble motion arc the single

btlbblc  cxpcrimcnts  of 1 lolt and Crum.  ] Results there show a changing but non-mro  sccond-
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harmonic ccmqmncnt.  However, those cxpcrimcnts were for driving frcqucncics up to 0.8@, and

thus do not include CO*, which is greater than coo. Single bubble cxpcrimcnts  involving purely

volume oscillations driven m!mvc  their linear rcsonancc  frequency have not been performed.

111. “1’hc big picture.

A larger question which is not trcatcct  by either set of authors is why onc might

mathematically or physically cxpcc(  the 2nd harmonic to ever disappear as the clriving  frequency is

changed (or, cquivalcnt]y,  as the tmbblc  siz,c is changed in a fixed driving frequency cxpcrimcnt).

‘1’o address this question, wc must first understand why a second harmonic appears at all in the

solution to a time-dynamic evolution process forced at a single frequency.

‘J’hc generic answer to this question is nonlinearity. Specifically, a quadratic nonlinearity in

the model equations describing the physics will yield a solution (analytically, the intrepid reader

can verify) varying at 20. If we rewrite the invi scid version of the RP equation to remove the

interpretation of radius and wall velocity by simply substituting x for N, and y for dR/clt, we obtain

two nonlinear coupled first-order 01]1{’s:

dx/dt  = y

dy/dt == (-3/2)y2/x  +- (PORO-3n)  X3n-1  - PO(l + &cos((tX)),

Wc thus wc have a quadratic ncmlincarity  in y, and either a quadratic or an approximately cubic

non]incarity  in x, depending on the value of q . It is clear that wc expect a 2@ compolient  in the

solution.

IV. ‘1’hc debate reengaged.

Considering all the available cvidcncc,  there is no physiml or mothctnatical rco.~on  why,

for any driving pressure and frequency (assuming a fixed equilibrium bubble radius) a particular

harmonic would disappear. 1 cxccpt, of course, the asymptotic limits of very small driving

pressure and very high order harmonics. “1’hc  case is different for subharnlonics,  since

(considering only pmely volume oscillations) they only arise via a saddle-node bifurcation, and
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thus can have exactly zero amplitucics  for finite, sharply demarcated regions of the driving

parameter space. While Z3’s suggestion that “one nonlinearity cancels the other, leading to the

7.cro amplitude result” at @* is intriguing, it is rather to be viewed as an artifact of the VI>

truncation than a feature of bubble dynamics,

However, being a thoroughgoing empiricist and expcrimcntalist,  I would consider the

question open until the experiment has been performed, and 1 offer a brief description of a way one

could go about it.

Optically levitateT a single, suitably small bubble in water. ‘levitate”, because the bubble

must be isolated to provide the correct boundary conditions for the RP equation; “single” for the

same reason. “Suitably” means mall enough so that the pressure threshold for onset of stable

shape oscillations is finite, but large enough to provide a large optical cross-sec(ion  at visible

wavelengths.

Determine the bubble’s static radius optically, cm via rise-time techniques. Drive the bubble

into volume oscillations with a standing or traveling acoustic wave at about a tenth of an

atmosphere. Using a lock-in amplifier, monitor the amplitude and phase of the second-harmonic

component of the scattered light from the bubble due to an incident laser beam of sufficient power

(and different wavelength from the levitating laser) satisfying the conditions for Mie scattering.

Keeping the static bubble radius constant, and the acoustic pressure amplitude constant, vary the

driving frequency cod from @to 3@. Alternatively, vary the static radius from RI (resonant at cod)

to 1<3 (resonant at @~/3),  keeping the driving pressure and frequency constant. “1’his last

suggestion, radius variation via controlled rectified diffusion during short bursts of hi gh-amplitude

ultrasound, is perhaps the easier of the two parameter variations proposed.
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